Sebuahbalok bermassa 10 kg didorong dari dasar suatu bidang miring yang panjangnya 5 m dan puncak bidang miring berada 3 m dari tanah. Benda bermassa m mula-mula berada di puncak bidang miring dan memiliki energi potensial E o. Benda kemudian meluncur dan sampai di titik P. Energi kinetik yang dimiliki benda saat di titik A adalah
BerandaPerhatikan gambar berikut! Bidang miring ter...PertanyaanPerhatikan gambar berikut! Bidang miring tersebut memiliki sudut kemiringan sebesar θ . Benda dengan massa m bergerak dengan kecepatan v menuju puncak bidang miring. Percepatangravitasi benda dinyatakan dalam g . Terjadi gesekan antara benda dan bidang miring dengan koefisien gesekan sebesar yang menyebabkan bendaberhenti di puncak bidang miring. Tentukan persamaan kecepatan benda mula-mula!Perhatikan gambar berikut! Bidang miring tersebut memiliki sudut kemiringan sebesar . Benda dengan massa m bergerak dengan kecepatan v menuju puncak bidang miring. Percepatan gravitasi benda dinyatakan dalam g. Terjadi gesekan antara benda dan bidang miring dengan koefisien gesekan sebesar yang menyebabkan benda berhenti di puncak bidang miring. Tentukan persamaan kecepatan benda mula-mula! ... ... Jawabanjawaban untuk persamaan kecepatan mula-mula adalahjawaban untuk persamaan kecepatan mula-mula adalah   PembahasanDiket Dit Jawab Cari nilai kecepatan di puncak Cari nilai percepatan Maka Jadi, jawaban untuk persamaan kecepatan mula-mula adalahDiket Dit Jawab Cari nilai kecepatan di puncak Cari nilai percepatan Maka Jadi, jawaban untuk persamaan kecepatan mula-mula adalah Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!128Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
D 20 m/s Jawaban: A (2 m/s) 8. Sebuah benda yang sedang bergerak dengan kecepatan 30 m/s mengalami percepatan tetap selama 5 sekon sampai mencapai kecepatan akhir 50 m/s. Percepatan yang dialami benda tersebut adalah . A. 2 m/s2 B. 4 m/s2 C. 6 m/s D. 8 m/s2 Jawaban: B (4 m/s2) 9. Sebuah mobil mengalami perlambatan konstan, kecepatan mula
Mahasiswa/Alumni Universitas Negeri Padang21 Juli 2022 1027Jawaban soal ini adalah 9,8my Joule. Diketahui massa balok = m tinggi bidang miring = y g = 9,8 m/s^2 Ditanya Ek = ? Jawab Soal ini dapat diselesaikan dengan konsep hukum kekekalan energi mekanik. Kita anggap bidang miring licin sehingga tidak ada gaya gesek antara balok dan bidang miring. Balok meluncur tanpa kecepatan awal sehingga energi kinetik balok di puncak bidang miring nol. Ek1 = 0 Energi potensial balok saat sampai di dasar bidang miring nol . Ep2 = 0 Energi kinetik balok saat sampai di dasar bidang miring Em1 = Em2 Ep1 + Ek1 = Ep2 + Ek2 + 0 = 0 + Ek2 Ek2 = m. 9,8. y Ek2 = 9,8my Joule Jadi besar energi kinetik balok tersebut ketika sampai di dasar bidang miring adalah 9,8my Joule.
Uranus(berasal dari nama Latin Ūranus untuk nama dewa Yunani Οὐρανός) adalah planet ketujuh dari Matahari.Uranus merupakan planet yang memiliki jari-jari terbesar ketiga sekaligus massa terbesar keempat di Tata Surya.Uranus juga merupakan satu-satunya planet yang namanya berasal dari tokoh dalam mitologi Yunani, dari versi Latinisasi nama dewa langit Yunani Ouranos.
Jou22 Jou22 Fisika Sekolah Menengah Atas terjawab • terverifikasi oleh ahli Benda bermassa m mula-mula berada di puncak bidang miring dan memiliki energi potensial E0 benda kemudian meluncurkan dan sampai dititik kinetik dimiliki benda pada saat ini di titik p dengan h1=ho dan h2=1/4 ho... Eo Eo Eo Iklan Iklan DenmazEvan DenmazEvan Kategori Fisika Bab Energi Mekanik Kelas XI SMA IPA Perhitungan dapat dilihat pada lampiran Iklan Iklan Pertanyaan baru di Fisika Frekuensi sebuah gelombang adalah 200 Hz dan panjang gelombangnya 350 cm, maka cepat rambat gelombang tersebut adalah seorang seorang anak mengendarai sepeda dengan kecepatan konstan. di satu titik pada permukaan ban belakang di aemprotkan cat berwarna terang. dilihat … dari belakang titik cat berwarna terang itu bergerak naik turun sebanyak 5 kali dalam 2 detik jika radius roda belakang 32 cm besar kecepatan sepeda itu adalah hitung nilai r total dari r1 20 ohm r2 15 ohm r3 30 ohm tenaga sumber v 12 Sebuah kubus terbuat dari bahan aluminium Al mempunyai volume 0,2 cm³ dan massa jenis 2,7 g/cm³. Jika berat atom aluminium, MAI = 27 g/mol, dan seti … ap mol aluminium mengandung 6,03 x 10^23 atom, berapa banyak atom yang terkandung dalam kubus aluminium tersebut? sebuah ayunan bergetar sebanyak 30 kali dalam waktu 2 sekon tentukan frekuensi Sebelumnya Berikutnya Iklan
Apabilabenda mula-mula berada pada ketinggian h 1, karena gaya beratnya benda bergerak vertikal ke bawah hingga ketinggian h 2 dari bidang acuan (Gambar 4.7). Gambar 4.6 Energi potensial gravitasi benda pada ketingggian h. h m mg h 1 h 2 Gambar 4.7 Energi potensial benda yang mula-mula berada pada ketinggian h1.
BerandaSebuah benda massanya 10 kg dilepaskan dari puncak...PertanyaanSebuah benda massanya 10 kg dilepaskan dari puncak bidang miring yang membentuk sudut sebesar θ = 3 0 ∘ terhadap bidang horizontal seperti gambar berikut. Bila g = 10 s 2 m dan benda bergerak kedasar bidang miring. Tentukan percepatan benda jika permukaan kasar μ = 0 , 4 . Sebuah benda massanya dilepaskan dari puncak bidang miring yang membentuk sudut sebesar terhadap bidang horizontal seperti gambar berikut. Bila dan benda bergerak kedasar bidang miring. Tentukan percepatan benda jika permukaan kasar . ... ... SNMahasiswa/Alumni Institut Teknologi BandungPembahasan Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!798Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
CheckPages 101-150 of Modul Fisika Kelas XI SMA Nasima in the flip PDF version. Modul Fisika Kelas XI SMA Nasima was published by rozaqnasima on 2020-08-09. Find more similar flip PDFs like Modul Fisika Kelas XI SMA Nasima. Download Modul Fisika Kelas XI SMA Nasima PDF for free.
Artikel ini membahas tentang kumpulan contoh soal yang berkaitan dengan gerak benda di bidang miring beserta pembahasannya. Bidang miring merupakan suatu bidang datar yang memiliki sudut kemiringan tertentu terhadap arah horizontal. Pada benda-benda yang terletak di atas bidang miring, maka gaya berat benda tersebut selalu memiliki dua komponen, yaitu komponen gaya berat pada sumbu-X dan komponen gaya berat pada sumbu-Y. Konsep yang kita gunakan untuk menyelesaikan soal tentang gerak benda di bidang miring adalah konsep Hukum Newton dan gaya gesek khusus untuk bidang miring kasar. Oleh karena itu, sebelum kita mulai ke pembahasan soal, ada baiknya kita ingat-ingat kembali ringkasan materi tentang Hukum Newton dan gaya gesek berikut ini. Konsep Hukum Newton Hukum I Newton Hukum II Newton Hukum III Newton F = 0 F = ma Faksi = −Freaksi Keadaan benda diam v = 0 m/s bergerak lurus beraturan atau GLB v = konstan Keadaan benda benda bergerak lurus berubah beraturan atau GLBB v ≠ konstan Sifat gaya aksi reaksi sama besar berlawanan arah terjadi pada 2 objek berbeda Konsep Gaya Gesek Gaya Gesek Statis Gaya Gesek Kinetis fs = μs N fk = μk N Bekerja pada benda diam v = 0 m/s tepat akan bergerak fs maksimum Bekerja pada benda bergerak baik GLB maupun GLBB Hubungan Gaya Gesek dan Gerak Benda Besar Gaya Luar Keadaan Benda Jika F fs maksimum Bergerak, berlaku Hukum II Newton dan bekerja gaya gesek kinetik fk Oke, jika kalian sudah paham mengenai konsep Hukum Newton dan gaya gesek, kini saatnya kita bahas beberapa soal tentang gerak benda di bidang miring. Simak baik-baik uraian berikut ini. Contoh Soal 1 Sebuah balok yang massanya 6 kg meluncur ke bawah pada sebuah papan licin yang dimiringkan 30° dari lantai. Jika jarak lantai dengan balok 10 m dan besarnya percepatan gravitasi di tempat itu adalah 10 ms-2, maka tentukan percepatan dan waktu yang diperlukan balok untuk sampai di lantai. Jawab Diketahui m = 6 kg s = 10 m θ = 30° g = 10 m/s Ditanyakan Percepatan dan waktu. Langkah pertama untuk menyelesaikan soal yang berhubungan dengan dinamika gerak adalah menggambarkan skema ilustrasi soal beserta diagram gaya yang bekerja pada sistem seperti yang ditunjukkan pada gambar di bawah ini. Karena kondisi bidang miring adalah licin, maka tidak ada gaya gesek sehingga kita tidak perlu menguraikan resultan gaya pada sumbu-Y atau sumbu vertikal. Menurut Hukum II Newton, resultan gaya yang bekerja pada benda dalam arah sumbu-X adalah sebagai berikut. FX = ma w sin θ = ma mg sin θ = ma a = g sin θ …………… Pers. 1 Menentukan percepatan Untuk menentukan besar percepatan balok, subtitusikan nilai-nilai yang diketahui dalam soal ke persamaan 1 sebagai berikut. a = g sin θ a = 10sin 30° a = 100,5 a = 5 m/s2 jadi, balok tersebut meluncur ke bawah dengan percepatan sebesar 5 m/s2. Important Rumus percepatan pada persamaan 1 berlaku untuk semua gerak benda di bidang miring licin tanpa gaya luar. Menentukan waktu untuk sampai di lantai Untuk menentukan waktu yang diperlukan balok untuk mencapai lantai, kita gunakan rumus jarak pada gerak lurus berubah beraturan atau GLBB. Kenapa GLBB bukan GLB?. s = v0t + ½ at2 karena tidak ada keterangan mengenai kecepatan awal, maka v0 = 0 sehingga s = ½ at2 t2 = 2s/a t = √2s/a …………… Pers. 2 Subtitusikan besar percepatan dan nilai yang diketahui dalam soal ke persamaan 2 t = √[210/5] t = √20/5 t = √4 t = 2 m/s2 Dengan demikian, waktu yang diperlukan balok untuk sampai ke lantai adalah 2 detik. Catatan Penting Contoh Soal 2 Sebuah benda bergerak menuruni bidang yang kemiringannya 37° terhadap bidang horizontal. Apabila besar koefisien gesek kinetik 0,1, maka tentukanlah percepatan dan kecepatan benda tersebut setelah bergerak selama 4 sekon. Jawab Diketahui θ = 37° μk = 0,1 t = 4 s g = 10 m/s Ditanyakan Percepatan dan kecepatan Langkah pertama, kita gambarkan skema ilustrasi soal lengkap dengan diagram gaya yang bekerja pada sistem seperti yang diperlihatkan pada gambar di bawah ini. Berbeda dengan contoh soal sebelumnya, karena kondisi bidang miring kasar, maka resultan gaya pada sumbu-Y juga perlu diuraikan, tentunya kalian tahu alasannya. Dengan menggunakan Hukum II Newton, maka resultan gaya yang bekerja pada benda adalah sebagai berikut. Resultan Gaya pada Sumbu-Y FY = ma N – w cos θ = ma Karena tidak terjadi gerak pada arah vertikal, maka a = 0 sehingga N – w cos θ = 0 N – mg cos θ = 0 N = mg cos θ Resultan Gaya pada Sumbu-X FX = ma w sin θ – f = ma mg sin θ – μkN = ma mg sin θ – μkmg cos θ = ma a = g sin θ – μkg cos θ …………… Pers. 3 Menentukan percepatan Untuk menentukan besar percepatan benda, subtitusikan nilai-nilai yang diketahui dalam soal ke persamaan 3 sebagai berikut. a = g sin θ – μkg cos θ a = 10sin 37° – 0,110cos 37° a = 100,6 – 10,8 a = 6 – 0,8 a = 5,2 m/s2 jadi, besar percepatan benda tersebut adalah 5,2 m/s2. Important Rumus percepatan pada persamaan 3 berlaku untuk semua gerak benda di bidang miring kasar tanpa gaya luar. Menentukan kecepatan Untuk menentukan besar kecepatan setelah 4 detik, kita gunakan rumus kecepatan pada gerak lurus berubah beraturan atau GLBB sebagai berikut. v = v0 + at karena tidak ada kecepatan awal, maka v0 = 0 v = at v = 5,24 v = 20,8 m/s Dengan demikian, besar kelajuan benda setelah bergerak selama 4 detik adalah 20,8 m/s. Catatan Penting Contoh Soal 3 Sebuah balok berada pada bidang miring kasar dengan sudut kemiringan sebesar 30°. Ternyata balok tepat akan meluncur ke bawah. Jika besar percepatan gravitasi adalah 10 m/s2, tentukan koefisien gesek statis antara balok dengan bidang miring tersebut. Jawab Langsung saja kita gambarkan skema ilustrasi soal beserta garis-garis gaya yang bekerja pada balok seperti pada gambar berikut ini. Karena balok tepat akan bergerak, maka balok belum bergerak sehingga percepatannya sama dengan nol. Dengan menggunakan Hukum I Newton, kita peroleh persamaan berikut ini. FX = 0 w sin 30° – f = 0 w sin 30° – μsN = 0 mg sin 30° – μsmg cos 30° = 0 μsmg cos 30° = mg sin 30° μs cos 30° = sin 30° μs = sin 30°/cos 30° μs = tan 30° μs = 1/3 √3 Jadi, koefisien gesek statis antara benda dengan bidang miring adalah 1/3 √3. Contoh Soal 4 Sebuah peti kayu bermassa 60 kg didorong oleh seseorang dengan gaya 800 N ke atas sebuah truk menggunakan papan yang disandarkan membentuk bidang miring. Ketinggian bak truk tempat papan bersandar adalah 2 m dan panjang papan yang digunakan adalah 2,5 m. Jika peti bergerak ke atas dengan percepatan 2 m/s2 dan g = 10 m/s2 maka tentukan koefisien gesek kinetis antara peti kayu dengan papan. Jawab Diketahui m = 60 kg F = 800 N a = 2 m/s2 tinggi bak y = 2 m Panjang papan r = 2,5 m g = 10 m/s Ditanyakan Koefisien gesek kinetik Ketika peti berada di atas papan, diagram gaya-gaya yang bekerja dapat kalian lihat pada gambar berikut ini. Karena sudut kemiringan bidang tidak diketahui, maka kita perlu mengetahui panjang sisi-sisi bidang miring. Dari soal, panjang sisi yang belum diketahui adalah sisi horizontal atau bisa kita misalkan sebagai x. Dengan menggunakan Teorema Phytagoras, maka panjang x adalah sebagai berikut. x2 = r2 – y2 x2 = 2,52 – 22 x2 = 6,25 – 4 x2 = 2,25 x = √2,25 = 1,5 m langkah selanjutnya adalah kita tentukan resultan gaya yang bekerja pada sumbu-X dan sumbu-Y dengan menggunakan Hukum Newton sebagai berikut. Resultan Gaya pada Sumbu-Y FY = ma N – w cos θ = ma Karena tidak terjadi gerak pada arah vertikal, maka a = 0 sehingga N – w cos θ = 0 N – mg cos θ = 0 N = mg cos θ Resultan Gaya pada Sumbu-X FX = ma F – w sin θ – f = ma F – mg sin θ – μkN = ma F – mg sin θ – μkmg cos θ = ma μkmg cos θ = F – mg sin θ – ma μkmgx/r = F – mgy/r – ma kemudian kita masukkan nilai-nilai yang diketahui dari soal ke persamaan di atas. μk60101,5/2,5 = 800 – 60102/2,5 – 602 360μk = 800 – 480 – 120 360μk = 200 μk = 200/360 μk = 0,56 Jadi, besar koefisien gesek kinetis antara peti kayu dengan papan adalah 0,56. Catatan Penting Demikianlah artikel tentang kumpulan contoh soal dan pembahasan tentang gerak benda di bidang miring beserta gambar ilustrasi dan diagram gayanya. Semoga dapat bermanfaat untuk Anda. Apabila terdapat kesalahan tanda, simbol, huruf maupun angka dalam perhitungan mohon dimaklumi. Terimakasih atas kunjungannya dan sampai jumpa di artikel berikutnya.
Sebuahbenda bermassa 5 kg ditarik keatas pada sebuah bidang miring yang kasar dengan gaya F = 50 N, jika bidang miring tersebut membentuk sudut 37o dengan sin 37o = 0,6 dan gaya gesekan antara bidang miring dengan balok adalah 4 N, maka usaha total pada balok tersebut adalah .
PembahasanDiketahui m = m E P 0 ​ = E 0 ​ h 0 ​ = h h P ​ = 4 1 ​ h Ditanya E K P ​ = ... ? Penyelesaian Energi Potensial mula-mula EP = m g h 0 ​ E 0 ​ = m g h h = m g E 0 ​ ​ Hukum kekekalan energi E P P ​ + E K P ​ = E P 0 ​ + E K 0 ​ m g h P ​ + E K P ​ = E 0 ​ + 0 E K P ​ = E 0 ​ − m g 4 1 ​ h E K P ​ = E 0 ​ − 4 1 ​ m g . m g E 0 ​ ​ E K P ​ = E 0 ​ − 4 1 ​ E 0 ​ E K P ​ = 4 3 ​ E 0 ​ Dengan demikian, energi kinetik dimiliki benda saat di titik P adalah 4 3 ​ E 0 ​ . Oleh karena itu, jawaban yang tepat adalah Ditanya Penyelesaian Energi Potensial mula-mula Hukum kekekalan energi Dengan demikian, energi kinetik dimiliki benda saat di titik P adalah . Oleh karena itu, jawaban yang tepat adalah D.
11 Bila dalam mengerjakan tugas/soal anda menemukan kesulitan, konsultasikan dengan guru pembimbing. 12. Ananda dapat melihat seberapa besar pemahaman ananda pada materi ini dengan mencocokkan jawaban hasil evaluasi ananda dengan lembaran feedback yang ada di halaman belakang bahan ajar ini.
Soal no. 14 Perhatikan gambar berikut ini! Seorang penari es sketting sedang berputar di atas lantai es dengan posisi tangan menyilang di dada sehingga memiliki kecepatan sudut $\omega $. Kemudian ia merentangkan kedua tangannya hingga kecepatan sudutnya menjadi $0,5\omega $. Perbandingan energi kinetik rotasi saat tangan menyilang dan saat tangan terentang adalah … Pembahasan Misalkan energi kinetik rotasi saat tangan menyilang dinyatakan dengan $${E_o} = {\textstyle{1 \over 2}}{I_o}\omega _o^2$$ dan energi kinetik rotasi setelah tangan terentang dinyatakan dengan $${E_1} = {\textstyle{1 \over 2}}{I_1}\omega _1^2$$ sehingga $$\frac{{{E_o}}}{{{E_1}}} = \frac{{{\textstyle{1 \over 2}}{I_o}\omega _o^2}}{{{\textstyle{1 \over 2}}{I_1}\omega _1^2}} = \frac{{{I_o}{\omega ^2}}}{{{I_1}{{\left {0,5\omega } \right}^2}}} = \frac{{{I_o}}}{{0,25 \cdot {I_1}}}$$ Dalam kasus penari sketting ini, berlaku hukum kekekalan momentum sudut. Yakni, momentum sudut penari saat posisi tangan menyilang di dada sama dengan momentum sudut penari saat dia merentangkan tangannya. Misalkan momentum sudut penari saat tangannya menyilang di dada adalah Io dan momentum sudut saat tangan direntangkan adalah I1 maka $${L_o} = {L_1}\ \ \Rightarrow \ \ {I_o}{\omega _o} = {I_1}{\omega _1}\ \ \Rightarrow\ \ {I_o}\omega = 0,5{I_1}\omega $$ Diperoleh ${I_o} = 0,5{I_1}$ Substitusi Io ini ke dalam persamaan Eo/E1 sehingga diperoleh $$\frac{{{E_o}}}{{{E_1}}} = \frac{{0,5 \cdot {I_1}}}{{0,25 \cdot {I_1}}} = 2\ \ \Rightarrow \ \ {E_o} = 2{E_1}$$ Jadi, perbandingan energi kinetik rotasi saat tangan menyilang dan saat tangan terentang adalah 2 1 Soal no. 15 Sebuah pesawat ruang angkasa yang sedang mengorbit bumi pada jarak tertentu dari permukaan bumi seperti ditunjukkan pada gambar. Pada suatu saat mesin pesawat mati sehingga pesawat kehilangan tenaga secara bertahap dan keluar dari orbitnya. Maka pada posisi x arah orbit pesawat yang benar ditunjukkan oleh gambar asumsi, gesekan pesawat dan udara diabaikan… Pembahasan Sebuah benda bergerak mengorbit karena adanya gravitasi yang bertindak sebagai gaya sentripetal. Gaya sentripetal dinyatakan dengan persamaan $${F_{sp}} = m\frac{{{v^2}}}{R}$$ Dengan m adalah massa benda satelit, v adalah kecepatan linear satelit dan R adalah jejari orbit. Ketika terjadi kerusakan mesin, kecepatan linear yang dimiliki satelit akan berkurang dari nilai yang sebelumnya. Akibatnya, gaya gravitasi tidak sama lagi dengan persamaan gaya sentripetal di atas. Gaya gravitasi bernilai lebih besar sehingga seiring dengan semakin mengecilnya kecepatan satelit, satelit itu akan semakin tertarik ke arah bumi sambil tetap berputar. Jadi, lintasan satelit akan seperti pada gambar B. Soal no. 16 Perhatikan gambar berikut! Benda bermassa m mula-mula berada di puncak bidang miring dan memiliki energi potensial Eo. Benda kemudian meluncur dan sampai di titik P. Energi kinetik yang dimiliki oleh benda saat di titik P adalah … Pembahasan Dengan menggunakan hukum kekekalan energi mekanik. $${E_{P1}} + {E_{K1}} = {E_{P2}} + {E_{P2}}$$ $${E_o} = {E_{K2}} + mg\left {{\textstyle{1 \over 4}}{h_o}} \right = {E_{K2}} + {\textstyle{1 \over 4}}mg{h_o}$$ Karena Eo = mgho maka persamaan di atas dapat ditulis menjadi $${E_o} = {E_{K2}} + {\textstyle{1 \over 4}}{E_o}\ \ \Rightarrow \ \ {E_{K2}} = {\textstyle{3 \over 4}}{E_o}$$ Jadi energi kinetik balok saat berada pada ketinggian ¼ ho adalah ¾ Eo. Soal no. 17 Sebuah benda yang massanya 2 kg meluncur di atas bidang miring tanpa kecepatan awal seperti pada gambar. Balok tersebut terus meluncur pada lantai yang kasar dengan koefisien gesek 0,4. Jika percepatan gravitasi 10 maka jarak yang ditempuh balok pada lantai sampai balok berhenti adalah .. Pembahasan Secara fisis, balok akan berhenti setelah menempuh jarak tertentu di atas lantai kasar karena adanya gaya gesekan. Gaya gesekan ini melakukan usaha negatif berlawanan arah dengan arah perpindahan sehingga menyebabkan energi kinetik balok menjadi nol. Dengan demikian, kita dapat menyelesaikan soal ini dengan menggunakan teorema usaha energi kinetik. $$W = {E_{K_1}} – {E_{K_2}}$$ Dalam hal ini hanya gaya gesekan yang melakukan usaha, yaitu $${W_{f_g}} = – {f_g} \cdot s$$ Energi kinetik mula-mula adalah energi kinetik di titik Q yang dapat kita hitung dengan menerapkan hukum kekekalan energi mekanik pada bidang miring sebagai berikut $${E_{P_P}} + {E_{K_P}} = {E_{P_Q}} + {E_{K_Q}}$$ Di titik Q energi potensial sama dengan nol sedangkan di titik P energi kinetik sama dengan nol, maka $${E_{P_P}} = {E_{K_Q}}\ \ \Rightarrow\ \ {E_{K_Q}} = mgh = \left 2 \right\left {10} \right\left {0,8} \right = 16\ {\rm{joule}}$$ Dari persamaan teorema usaha-energi kinetik sebelumnya, kita dapat menuliskan $${W_{f_g}} = {E_{K_R}} – {E_{K_Q}}\ \ \Rightarrow \ \ – {f_g} \cdot s = {E_{K_R}} – {E_{K_Q}}$$ Karena benda berhenti di titik R maka energi kinetik di titik itu nol atau EKR = 0 sedangkan ${f_g} = \mu N = \mu mg$ maka $$ – \mu mg \cdot s = – {E_{K_Q}}\ \ \Rightarrow \ \ s = \frac{{{E_{K_Q}}}}{{\mu mg}} = \frac{{16}}{{\left {0,4} \right\left 2 \right\left {10} \right}} = 2\ {\rm{m}}$$ Jadi balok berhenti sejauh 2 m dari titik Q. Soal no. 18 Perhatikan gambar dari tiga peristiwa tumbukan tidak lenting berikut! Setelah tumbukan terjadi, urutan besar kecepatan benda yang ditumbuk dari kecepatan besar ke kecil adalah … A. Gambar 1, gambar 2, gambar 3 B. Gambar 1, gambar 3, gambar 2 C. Gambar 2, gambar 3, gambar 1 D. Gambar 3, gambar 1, gambar 2 E. Gambar 3, gambar 2, gambar 1 Pembahasan Dengan menggunakan hukum kekekalan momentum, kita dapat menuliskan persamaan untuk masing-masing tumbukan sebagai berikut $${m_1}{v_1} + {m_2}{v_2} = {m_1}{v’_1} + {m_2}{v’_2}$$ Untuk gambar 1 $$4mV = 4m{v’_1} + m{v’_2}\ \ \Rightarrow \ \ 4V = 4{v’_1} + {v’_2}\ \ \Rightarrow {v’_2} = 4\left {V – {v’_1}} \right$$ Untuk gambar 2 $$mV = 4m{v’_1} + m{v’_2}\ \ \Rightarrow \ \ V = 4{v’_1} + {v’_2}\ \ \Rightarrow \ \ {v’_2} = V – 4{v’_1}$$ Untuk gambar 3 $$mV = m{v’_1} + m{v’_2}\ \ \Rightarrow \ \ V = {v’_1} + {v’_2}\ \ \Rightarrow \ \ {v’_2} = V – {v’_1}$$ Dengan memperhatikan ketiga persamaan di atas dapat disimpulkan bahwa urutan besar kecepatan benda yang ditumbuk dari kecepatan besar ke kecil adalah gambar 1, gambar 3, dan gambar 2. Soal no. 19 Sebuah benda massanya 1200 gram meluncur dari suatu ketinggian tanpa kecepatan awal seperti pada gambar. Percepatan gravitasi di tempat itu 10 maka besar energi kinetik benda di titik C adalah …. Pembahasan Anggap tidak ada gesekan selama gerakan benda sehingga kita dapat menggunakan hukum kekekalan energi mekanik. Energi mekanik di posisi A = energi mekanik di posisi C $$mg{h_A} + {\textstyle{1 \over 2}}m{v_A}^2 = mg{h_C} + {\textstyle{1 \over 2}}m{v_C}^2$$ Ambil titik acuan di C sehingga hC = 0 dan hA = 3 m. Kecepatan awal di A sama dengan nol sehingga $$mg3 + 0 = 0 + {\textstyle{1 \over 2}}m{v_C}^2\ \ \Rightarrow \ \ {v_C} = \sqrt {6g} = \sqrt {60} = 2\sqrt {15}\ m/s$$ Soal no. 20 Dua ayunan balistik menggunakan peluru dengan kecepatan v1 dan v2 seperti gambar. Jika h2 = 1,5 h1 maka perbandingan kecepatan peluru 1 dan 2 adalah … Pembahasan Untuk dapat membandingkan v1 dan v2 maka kita harus menghitung kedua variabel tersebut. Soal ini adalah soal ayunan balistik. Pada peristiwa ayunan balistik, analisis dilakukan dengan membaginya ke dalam dua bagian. Pertama, saat peluru bergerak dan menumbuk balok. Pada peristiwa ini berlaku hukum kekekalan momentum. $${m_p}{v_p} + {m_b}{v_b} = {m_p}{v’_p} + {m_b}{v’_b}$$ dimana indeks p menyatakan peluru dan indeks b menyatakan balok. Kecepatan setelah tumbukan dinyatakan dengan v’. Karena kecepatan peluru sebelum tumbukan adalah v1 dan balok mula-mula dalam keadaan diam berarti v2 = 0. Selain itu, setelah tumbukan peluru masuk ke dalam balok dan bergerak bersama-sama, berarti kecepatan balok dan kecepatan peluru setelah tumbukan sama misalkan dinyatakan dengan v’, maka persamaan di atas akan menjadi $${m_p}{v_1} = {m_p} + {m_b}v’\ \ \Rightarrow\ \ v’ = \frac{{{m_p}}}{{{m_p} + {m_b}}}{v_1}\ \ …. \ 1$$ Kedua, saat peluru yang telah bersarang ke dalam balok bergerak bersama ke atas sehingga mencapai ketinggian h1 dari keadaan awalnya. Pada bagian gerak ini berlaku hukum kekekalan energi mekanik. $$mg{h_o} + {\textstyle{1 \over 2}}m{v_o}^2 = mg{h_1} + {\textstyle{1 \over 2}}m{v_1}^2$$ Dalam hal ini, m adalah massa gabungan antara balok dan peluru m1 + m2, vo adalah kecepatan balok bersama peluru peluru berada di dalam balok yang tidak lain adalah v’ dalam persamaan 1. h1 adalah tinggi yang dicapai balok dan v1 adalah kecepatan balok+peluru pada ketinggian tersebut dalam hal ini kecepatan balok+peluru pada ketinggian tersebut adalah nol. Dengan mengambil acuan ketinggian pada posisi awal balok, maka ho = 0, sehingga persamaan di atas menjadi $${\textstyle{1 \over 2}}\left {{m_p} + {m_b}} \right{\left {\frac{{{m_p}}}{{{m_p} + {m_b}}}{v_1}} \right^2} = \left {{m_p} + {m_b}} \rightg{h_1}$$ $$\frac{1}{2}\frac{{{m_p}^2}}{{\left {{m_p} + {m_b}} \right}}{v_1}^2 = \left {{m_p} + {m_b}} \rightg{h_1}\ \ \Rightarrow \ \ {v_1}^2 = 2\frac{{{{\left {{m_p} + {m_b}} \right}^2}}}{{{m_p}}}g{h_1}$$ Selanjutnya, untuk ayunan balistik kedua, analisisnya persis seperti di atas. Pada gerak bagian pertama yaitu peristiwa tumbukan antara peluru dengan balok, dengan menerapkan hukum kekekalan momentum diperoleh persamaan $${m_p}{v_2} = {m_p} + {m_b}v’\ \ \Rightarrow v’ = \frac{{{m_p}}}{{{m_p} + {m_b}}}{v_2}$$ Selanjutnya pada gerak bagian kedua, saat balok bersama peluru bergerak berayun, dengan menggunakan hukum kekekalan energi mekanik diperoleh persamaan $$\frac{1}{2}\frac{{{m_p}^2}}{{\left{{m_p} + {m_b}} \right}}{v_2}^2 = \left {{m_p} + {m_b}} \rightg{h_2}$$ Karena h2 = 1,5h1 maka $$\frac{1}{2}\frac{{{m_p}^2}}{{\left {{m_p} + {m_b}} \right}}{v_2}^2 = \left {{m_p} + {m_b}} \rightg\left{1,5{h_1}} \right\ \ \Rightarrow \ \ {v_2}^2 = 3\frac{{{{\left {{m_p} + {m_b}} \right}^2}}}{{{m_p}}}g{h_1}$$ Selanjutnya, dengan membandingkan v12 dan v22 yang telah diperoleh di atas akan didapatkan bahwa $$\frac{{{v_1}^2}}{{{v_2}^2}} = \frac{3}{2}\ \ \Rightarrow \ \ \frac{{{v_1}}}{{{v_2}}} = \frac{{\sqrt 3 }}{{\sqrt 2 }}$$ Jadi perbandingan antara v1 dan v2 adalah $\sqrt 3 \sqrt 2 $.
22 v 22 24,958 v 2 24,958 4,996 5 m / s Contoh Soal 3.5 Sebuah balok berada di atas suatu bidang miring yang panjangnya 2 m dan membentuk sudut 30o terhadap horisontal. Mula-mula balok tersebut dipegang tetap kemudian dilepaskan sehingga ia turun ke bawah.
FisikaMekanika Kelas 10 SMAHukum NewtonHukum Newton Tentang GerakSebuah benda bermassa 10 kg dilepaskan dari puncak bidang miring yang membentuk sudut sebesar theta=30 terhadap horizontal seperti ditunjukkan pada gambar di menganggap besar percepatan gravitasi g=10 m/s^2 dan benda bergerak ke dasar bidang miring, tentukan a percepatan benda jika permukaan bidang miring tersebut licin dan b percepatan benda jika permukaan bidang miring tersebut kasar mu=0,4.Hukum Newton Tentang GerakHukum NewtonMekanikaFisikaRekomendasi video solusi lainnya0435Sebuah mobil massanya 1,5 ton bergerak dengan kelajuan 72...0134Suatu benda bermassa 5 kg berada di papan yang licin semp...0228Sebuah benda massanya 20kg terletak pada bidang miring de...0130Gaya sebesar 40 ~N dengan arah ke kanan bekerja ke obje...
W= usaha yang dilakukan oleh gaya berat (J) w = berat benda (N) θ = sudut kemiringan bidang miring. s = perpindahan benda (m). Contoh soal : Sebuah benda bermassa 40 kg meluncur dari bagian atas bidang miring dan berpindah sejauh 2 meter. Jika kemiringan bidang tersebut adalah 37 o, maka tentukanlah usaha yang dilakukan oleh gaya berat tersebut.
Kelas 10 SMAUsaha Kerja dan EnergiKonsep EnergiSebuah balok bermassa m kg dilepaskan dari puncak bidang miring yang licin seperti gambar di bawah ini. Perbandingan energi potensial dan energi kinetik balok ketika berada di titik M adalah.... h M 1/3HKonsep EnergiUsaha Kerja dan EnergiMekanikaFisikaRekomendasi video solusi lainnya0209Sebuah benda bermassa 4kg mula-mula diam, kemudian berger...0106A pabila Siswo bersepeda menuruni bukit tanpa mengayuh pe...0245Sebuah pegas yang tergantung dalam keadaan normal panjang...Teks videokopling pada sekali ini ditanyakan perbandingan energi potensial dan energi kinetik balok ketika berada di titik M berarti ketika balok berada di titik Mini Berapakah perbandingan energi kinetik dan energi potensialnya yang perlu diketahui adalah nilai dari energi kinetik di titik M dan energi potensial di titik M Tuh berapa? oke pertama-tama disini pada gambar hanya diketahui hanya saja ya atau ketinggiannya saja maka disini kita dapat simpulkan bahwa energi potensial di titik M itu dapat kita dapatkan ya yaitu m * g * h nya adalah 1/3 ke jadi ini adalah nilai dari energi potensial di titik M nya bagaimana dengan energi kinetik di titik M yang kita dapat mencari nilai dari X Mini dengan menggunakan hukum kekekalan energi mekanik ya di M di titik manapun itu akan sama jika energi mekanik di titik M Oke jadi kita ambil contoh energi mekanik di titik tertinggi ya di titik dengan ketinggian h. key kita simbolkan energi mekanik dititik hari ini dengan MHD PH besar oke lalu rumus energi mekanik ialah energi kinetik H ditambah energi potensial sama dengan energi kinetik m + energi potensial oke lalu disini kita harus tahu kita tinjau di titik hal ini bahwa energi kinetik di titik tertinggi itu adalah nol Ya kenapa Karena balok ini pada di titik tertinggi ini baru akan meluncur Jadi ia belum mempunyai kecepatan Oke karena ia baru akan meluncur ke bawah maka dia belum mempunyai kecepatan karena rumus dari energi kinetik itu adalah Energi kinetik itu rumusnya adalah setengah m p. Kuadrat di mana awal dari bawah itu pada saat ketinggian H ini adalah 0 ya Jadi pada ketinggian maksimum energi kinetik di titik H energi kinetik balok titik H itu oke selalu disini energi potensial hanya itu kita ketahui itu m * g * h nya adalah tingginya adalah H ya berarti sini kita h lalu KM itu yang dicari di tambah RPM sudah kita ketahui yaitu m * g dikali 3 ha. Ok ini dapat kita pindah ruas jadi disini Eka m itu sama dengan MG hanya dapat kita gabungkan jadi ha dikurang 3 ha ya Oke MG nya keluar karena sama-sama dengan variabel yang sama maka ia keluar dan haknya itu di selisih ke jadi kita dapatkan nilai x km = m * g di X dikurang sepertiga hal itu adalah 2/3 Haya Oke kita sudah didapatkan nilai dari X KM dan IPM Nya maka dapat kita bandingkan sekarang nilai dari X km per jam di sini km banding epm gimana SKM itu nilainya adalah m * g * 2 per 3 banding EP nya m * g * 1/3 h ke m hanya dapat kita coret hanya dapat kita coret lalu ini penyebutnya sama-sama 3 kita coret maka hasil perbandingannya adalah 2 banding 1 ini untuk energi kinetik energi potensial jadi pada option itu yang benar adalah B ya, Jadi mereka 91 banding 2 ini efeknya satu ini hanya 2 Oke jadi jawabannya yang B Oke sampai ketemu di iso nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
. 2muj1rpch8.pages.dev/9472muj1rpch8.pages.dev/8112muj1rpch8.pages.dev/3042muj1rpch8.pages.dev/6612muj1rpch8.pages.dev/3132muj1rpch8.pages.dev/4902muj1rpch8.pages.dev/5642muj1rpch8.pages.dev/7332muj1rpch8.pages.dev/632muj1rpch8.pages.dev/7732muj1rpch8.pages.dev/8592muj1rpch8.pages.dev/7962muj1rpch8.pages.dev/8792muj1rpch8.pages.dev/4852muj1rpch8.pages.dev/900
benda bermassa m mula mula berada di puncak bidang miring